Grandeurs Physiques

Equations aux dimensions

Dr Romain LE PENNEC Biophysique - Médecine nucléaire La physique a pour but de décrire des phénomènes et d'étudier leurs propriétés.

Leur étude nécessite la définition de **GRANDEURS PHYSIQUES**

A chaque grandeur physique va correspondre une **UNITE**.

GRANDEURS PHYSIQUES

Grandeur physique = propriété physique mesurable

Mesure de la grandeur s'obtient par comparaison entre 2 grandeurs physiques de même nature dont l'une est choisie comme unité.

Exemple:

Par définition (1983), 1 mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde.

Toute longueur peut s' exprimer sous la forme I = x mètres

SYSTEME INTERNATIONAL D'UNITES

1960 :11ème Conférence Générale des Poids et Mesure

- Choix de **7 grandeurs fondamentales** (et unités de base), considérées par convention indépendantes sur un plan dimensionnel.
 - Masse, Longueur, Temps, Intensité de courant électrique, Température, Quantité de matière, Intensité lumineuse.

Toute grandeur physique peut s'exprimer à partir de ces unités fondamentales.

- **2 grandeurs supplémentaires** ont été introduites ensuite pour assurer la cohérence du système : *Angle plan et Angle solide.*

SYSTEME INTERNATIONAL D'UNITES

Grandeur fondamentale	Unités	Symboles
Masse	kilogramme	kg
Longueur	mètre	m
Temps	seconde	s
Intensité courant électrique	ampère	A
Température	kelvin	K
Quantité de matière	mole	Mol
Intensité lumineuse	candéla	cd
Unités supplémentaires	Unités	Symboles
Angle plan	Radian	rad
Angle solide	Stéradian	sr

EQUATION AUX DIMENSIONS

Principe:

Ramener les différents paramètres d'une relation aux grandeurs fondamentales du SIU.

Intérêt :

- Déterminer l'unité d'une grandeur en fonction des grandeurs fondamentales.
- Faire des conversions d'unité.
- Vérifier l'homogénéité d'une formule.

EQUATION AUX DIMENSIONS

Homogénéité d' une formule.

$$\frac{1}{2}$$
 m v² = m g h

$$[M].[L.T^{-1}]^2 = [M].[L.T^{-2}].[L]$$

$$= [M].[L]^2 [T]^{-2} = Energie$$

Vitesse

Distance parcourue par unité de tps

$$v = \frac{dx}{dt}$$

Equation aux dimensions

$$\left[v\right] = \frac{\left[L\right]}{\left[T\right]} = \left[LT^{-1}\right]$$

m.s⁻¹ en SI

Accélération

Variation de vitesse par unité de tps

$$\gamma = \frac{dv}{dt}$$

Equation aux dimensions

$$\left[\mathcal{G}\right] = \frac{\left[L\right]}{\left[T\right]} \times \frac{1}{\left[T\right]} = \oint LT^{-2} \dot{\theta}$$

m.s⁻² en SI

Force

$$F = m \times \gamma$$

[F] =[M].[a]
=[M].[L].[T]-2
=
$$Kg.m.s^{-2}$$
 en SI (Newton)

Pression

Force appliquée sur une surface

$$P = \frac{F}{S}$$

Energie ou Travail

$$E = F \times L$$

Puissance

Energie par unité de temps

$$Puissance = \frac{E}{T}$$

```
[Puissance] = [W]/[T]=[F].[L].[T]^{-1}
= [M].[L].[T]^{-2}.[L].[T]^{-1}
= [M].[L]^2.[T]^{-3}
= [M].[L]^2.s^{-3} en SI (Watt)
```

EXERCICE

Donner l'équations aux dimensions du coefficient de viscosité

$$n = \frac{f Dx}{S Dv}$$

f force, x longueur, S surface, v vitesse de déplacement

EXERCICE

Coefficient de viscosité

$$n = \frac{f.\Delta x}{S.\Delta v}$$

$$[n] = \frac{\oint MLT^{-2} \cdot L \cdot \int}{\oint L^2 \cdot LT^{-1} \cdot \int} = \oint ML^{-1}T^{-1} \cdot \int kg \cdot m^{-1} \cdot s^{-1} \text{ ou Poiseuille en SI}$$

Dans le système international:

- A) Une force s' exprime en Kg.m².s⁻²
- B) Une puissance s' exprime en Kg.m².s⁻³
- C) Un débit s' exprime en l.s⁻¹
- D) Une pression s' exprime en Kg. m⁻¹.s⁻²
- F) Un travail s' exprime en Kg. m².s⁻²

Réponses : B, D, F

Dans le système international:

A) Une force s' exprime en Kg.m².s⁻²

```
faux : [F] =[M].[a]
=[M].[L].[T]<sup>-2</sup>
= Kg.m.s<sup>-2</sup> (Newton)
```

B) Une puissance s' exprime en Kg.m².s⁻³

Dans le système international:

C) Un débit s' exprime en l.s⁻¹

faux: m3. s-1

```
D) Une pression s' exprime en Kg. m^{-1}.s^{-2}

vrai : Pression = Force sur une surface

=[M].[L].[T]^{-2}. [L]^{-2}

=[M].[L]^{-1}.[T]^{-2}

= Kg. m^{-1}.s^{-2} (pascal = Force de 1

Newton sur 1 m^{2})
```

Dans le système international:

F) Un travail s' exprime en Kg. m².s⁻²

vrai : W =[F].[L]

=[M].[L].[T]⁻² . [L]

=[M].[L]².[T]⁻²

= Kg. m².s⁻² (joule)