

UE 8 Pharmacie TD 1 Chimie Analytique

UFR Pharmacie - Rennes

Dr Marylène CHOLLET-KRUGLER / UFR Pharmacie / Rennes/Février 2024

"Ce document est la propriété exclusive de Marylène CHOLLET-KRUGLER et ne saurait être utilisé, reproduit, représenté, transmis ou divulgué sans son accord préalable et explicite"

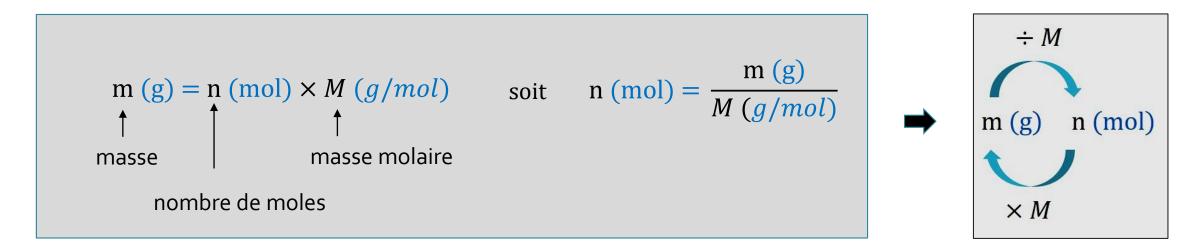
A. Lavoisier(1743-1794)

« Rien ne se perd, rien ne se crée, tout se transforme »

TD1 : Expression des concentrations, dilutions, calculs stœchiométriques

- Savoir calculer une masse molaire (Exos 1 à 8)
- Savoir pondérer une réaction (Exos 3, 9)
- Savoir calculer une grandeur à partir de données : quantité de matière n, masse m, concentration molaire et massique, % m/V, % m/m, rendement d'une réaction (Exos 1 à 8)
- Connaître les relations entre la masse m et la quantité de matière n, entre la concentration molaire et la concentration massique (Exos 1 à 6)
- Savoir calculer la concentration d'une solution diluée et le facteur de dilution, savoir préparer une solution diluée à partir d'une solution concentrée, (Exos 5, 7 à 9)
- Connaître les correspondances mL-cm³, L-dm³...et les conversions mL en L, mmol en mol...
- Savoir calculer une concentration à partir d'un titrage (Exo 9)

Exercice 1 : Enoncé


· L'apport journalier recommandé de Fer s'élève à 14 mg et celui de la Vitamine B3 (niacine) à 16 mg.

OH Vit B3

Parmi les propositions suivantes, laquelle correspond à ces doses quotidiennes ?

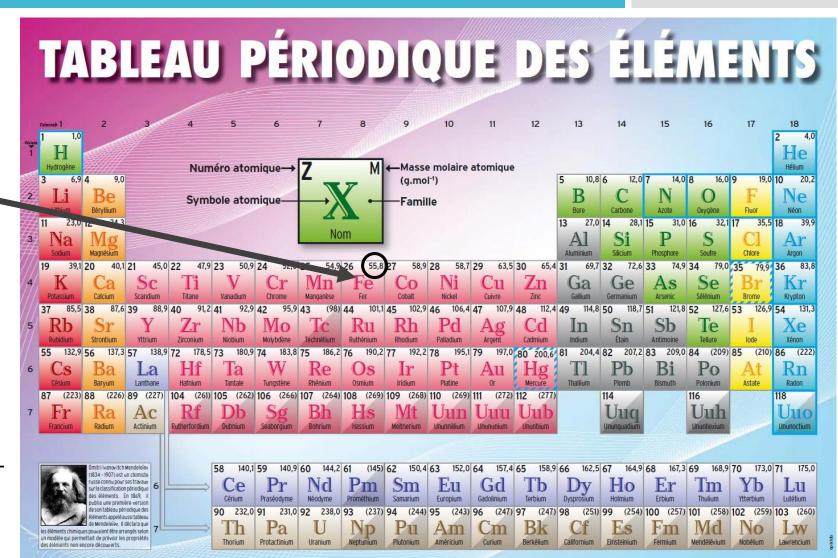
- **A** Fer: $2,5.10^{-1}$ mol et Vitamine B3: $1,3.10^{-1}$ mol
- **B** Fer: 2,5.10⁻⁴ mol et Vitamine B3: 1,3.10⁻⁴ mol
- **C** Fer: 2,5.10⁻¹ mmol et Vitamine B3: 1,3.10⁻¹ mol
- o **D** Fer: 2,5 mol et Vitamine B3: 1,3 mol
- \circ **E** Fer: 2,5.10⁻¹ mol et Vitamine B3: 1,3.10⁻¹ mmol

• Relation **fondamentale** entre le nombre de moles **n**, la masse **m** et la masse molaire **M** de la substance :

mol = unité de la quantité de matière

1 mole = 6,022.10²³ entités = Nombre d' Avogadro

Masse molaire?


- Fer

M(Fe) = 55.8 g/mol

- Vit B3:

Formule brute : C₆H₅NO₂

$$M (C_6H_5NO_2) = (6 \times 12,0) + (5 \times 1,0) + 14,0 + (2 \times 16,0) = 123,0 \text{ g/mol}$$

• *Nombre de moles?*

$$n = \frac{m(Fe)}{M(Fe)} = \frac{14.10^{-3}}{55.8} = 2.5.10^{-4} \text{ mol} = 2.5.10^{-1} \text{ mmol}$$

$$n \text{ (mol)} = \frac{m \text{ (g)}}{M \text{ (g/mol)}}$$

$$(1 \text{ mmol} = 10^{-3} \text{mol})$$

n =
$$\frac{m(Vit B3)}{M(Vit B3)}$$
 = $\frac{16.10^{-3}}{123.0}$ = 1,3.10⁻⁴ mol =1,3.10⁻¹ mmol

- **A** Fer: 2,5.10⁻¹ mol et Vitamine B3: 1,3.10⁻¹ mol
- **X** B Fer: $2,5.10^{-4}$ mol et Vitamine B3: $1,3.10^{-4}$ mol
- **C** Fer: 2,5.10⁻¹ mmol et Vitamine B3: 1,3.10⁻¹ mol
- o **D** Fer: 2,5 mol et Vitamine B3: 1,3 mol
- **E** Fer: 2,5.10⁻¹ mol et Vitamine B3: 1,3.10⁻¹ mmol

Exercice 2 : Enoncé

• Chez un homme, l'apport journalier recommandé en **phosphore** s'élève à **550 mg** et celui en **Vitamine B2** à **1,6 mg**. Parmi les propositions suivantes, laquelle (lesquelles) correspond(ent) à ces doses quotidiennes ?

- **A** Phosphore : 14,1 mmol et Vit B2 : 4,55.10⁻³ mol
- **B** Phosphore : 17,7.10⁻³ mol et Vit B2 : 4,55.10⁻⁶ mol
- **C** Phosphore: 14,1.10⁻³ mol et Vit B2: 4,26.10⁻³ mol
- **D** Phosphore: 17,7 mmol et Vit B2: 4,26.10⁻³ mmol
- E Toutes les propositions précédentes sont inexactes

Masse molaire?

Phosphore: M(P) = 31 g/mol

Vit B2:
$$M(C_{17}H_{20}N_4O_6) = (17 \times 12,0) + (20 \times 1,0) + (4 \times 14,0) + (6 \times 16,0) = 376,0 \text{ g/mol}$$

- Ne pas confondre le symbole du Potassium **K** avec celui du Phosphore **P**
- Calcul de la masse molaire: ne pas oublier des atomes!

• *Nombre de moles?*

Phosphore
$$n = \frac{m(P)}{M(P)} = \frac{550.10^{-3}}{31,0} = 17,7.10^{-3} \text{ mol} = 17,7 \text{ mmol}$$

Vit B2:
$$n = \frac{m(Vit B2)}{M(Vit B2)} = \frac{1,6.10^{-3}}{376,0} = 4,26.10^{-6} \text{ mol} = 4,26.10^{-3} \text{ mmol}$$

- **A** Phosphore : 14,1 mmol et Vit B2 : 4,55.10⁻³ mol
- **B** Phosphore: 17,7.10⁻³ mol et Vit B2: 4,55.10⁻⁶ mol
- **C** Phosphore : 14,1.10⁻³ mol et Vit B2 : 4,26.10⁻³ mol
- **D** Phosphore: 17,7 mmol et Vit B2: 4,26.10⁻³ mmol
- E Toutes les propositions précédentes sont inexactes

Réponse D

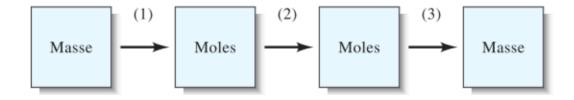
Exercice 3 : Enoncé

• 1) Quelle masse de $AgNO_3$ est nécessaire pour transformer totalement 2,65 g de Na_2CO_3 en Ag_2CO_3 selon la réaction non pondérée :

$$Na_2CO_3(aq) + AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + NaNO_3(aq)$$

• 2) Quelle masse théorique de Ag₂CO₃ se formera ?

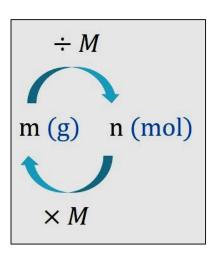
• 1) Quelle masse de AgNO₃ est nécessaire pour transformer totalement 2,65 g de Na₂CO₃ en Ag₂CO₃ selon la réaction non pondérée :


$$Na_2CO_3(aq) + AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + NaNO_3(aq)$$

· Conservation de la matière : ajout de coefficients stœchiométriques

$$Na_2CO_3(aq) + 2 AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$$

$$Na_2CO_3(aq) + 2 AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$$

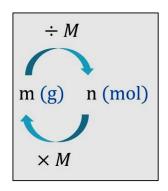

· Calcul en 3 étapes :

• <u>étape 1</u>: Convertir la masse de Na₂CO₃ (2,65 g) en nombre de moles

$$M(Na_2CO_3) = (2 \times 23.0) + 12 + (3 \times 16.0) = 106.0 \text{ g/mol}$$

$$n_{\text{Na}_2\text{CO}_3} = \frac{m}{M_{\text{Na}_2\text{CO}_3}} = \frac{2,65}{106,0} = 0,025 \text{ mol}$$

• <u>étape 2</u>: Détermination n_{AgNO3} , tenir compte de la stœchiométrie


$$Na_2CO_3(aq) + 2 AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$$

$$\frac{n_{\text{Na}_2\text{CO}_3}}{1} = \frac{n_{\text{AgNO}_3}}{2}$$
 \Rightarrow $n_{\text{AgNO}_3} = 2 n_{\text{Na}_2\text{CO}_3} = 0.05 \text{ mol}$

• <u>étape 3</u>: Convertir le nombre de moles en masse correspondante

$$M (AgNO_3) = 107.9 + 14.0 + (3 \times 16.0) = 169.9 g/mol$$

$$m (AgNO_3) = n(AgNO_3) \times M(AgNO_3) = 0.05 \times 169.9 = 8.50 g$$

• 2) Quelle masse théorique de Ag₂CO₃ se formera ?

$$Na_2CO_3(aq) + 2 AgNO_3(aq) \longrightarrow Ag_2CO_3(s) + 2 NaNO_3(aq)$$

$$\frac{n_{\text{Na}_2\text{CO}_3}}{1} = \frac{n_{\text{Ag}_2\text{CO}_3}}{1} \qquad \Rightarrow \qquad n_{\text{Ag}_2\text{CO}_3} = n_{\text{Na}_2\text{CO}_3} = 0,025 \text{ mol}$$

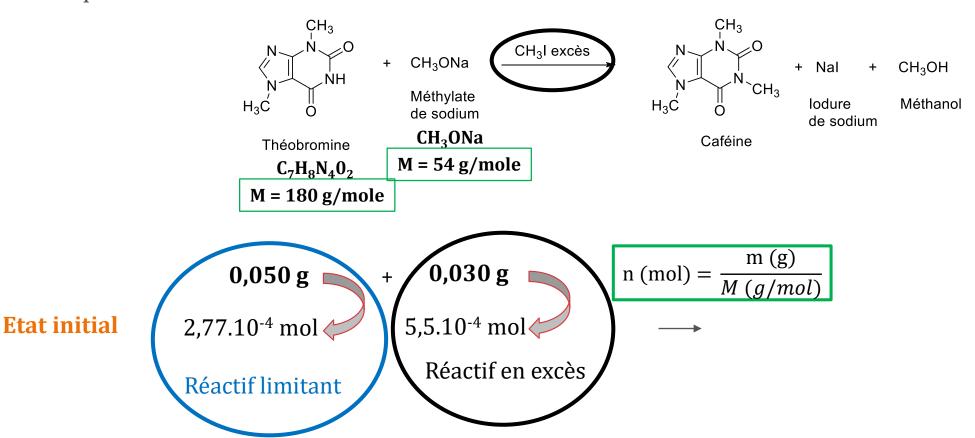
$$M (Ag_2CO_3) = 2 \times 107,9 + 12,0 + (3 \times 16,0) = 275,8 \text{ g/mol}$$

 $m (Ag_2CO_3) = n (Ag_2CO_3) \times M (Ag_2CO_3) = 0,025 \times 275,8 = 6,90 \text{ g}$

Exercice 4: Enoncé

• On considère la synthèse de la caféine selon la réaction suivante:

- 0,048 g de ce composé est produit en faisant réagir 0,050 g de théobromine avec 0,030 g de méthylate de sodium et un excès d'iodométhane CH₃I. Quel est le rendement de cette réaction chimique ?
 - o A 89,1%
 - o **B** 78,0%
 - o **C** 44,5%
 - **D** 96,0%
 - **E** Toutes les propositions précédentes sont fausses


• Définition **Rendement de la réaction** :

$$R \text{ (\%)} = \frac{n_{exp} \text{ (mol)}}{n_{th\acute{e}o} \text{ (mol)}} \times 100 = \frac{m_{exp} \text{ (g)}}{m_{th\acute{e}o} \text{ (g)}} \times 100$$

- \triangleright chimie expérimentale : $n_{th\acute{e}o}$ rarement atteint,
- \triangleright n réellement formée = n_{exp}
- $> n_{th\acute{e}o}$ produit = n_{max} produit
- $> n_{max}$ produit = n réactif limitant (si réactifs pas introduits en quantité stœchiométrique)

- · Calcul en 4 étapes :
 - Etape 1: Vérification si équation pondérée : oui

• <u>Etape 2</u>: Identification **du réactif limitant**

• Etape 3: Quantité maximale théorique de produits formés ?

Etat initial

2,777.10⁻⁴ mol

5,555.10⁻⁴ mol

Etat final théorique

0 mol

2,778.10⁻⁴ mol \longrightarrow $n_{th\acute{e}o} = 2,777.10^{-4}$ mol

• Etape 4: Rendement de la réaction

Etat initial

2,777.10⁻⁴ mol

5,555.10⁻⁴ mol

Etat final théorique

0 mol

2,778.10⁻⁴ mol —

 $n_{\text{th\'eo}} = 2,777.10^{-4} \text{ mol}$

Etat final expérimental

$$n (mol) = \frac{m (g)}{M (g/mol)}$$

R (%) =
$$\frac{n_{exp} \text{ (mol)}}{n_{th\acute{e}o} \text{ (mol)}} \times 100 = \frac{2,474.10^{-4}}{2,777.10^{-4}} \times 100 = 89,1 \%$$

Exercice 4 : Enoncé

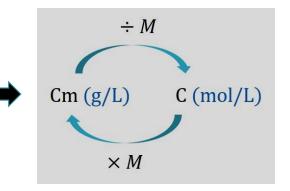
- **X A** 89,1%
- o **B** 78,0%
- **o C** 44,5%
- **o D** 96,0%
- o **E** Toutes les propositions précédentes sont fausses

Réponse A

Exercice 5: Enoncé

On dissout 22,0 g de phosphate trisodique dodécahydraté Na_3PO_4 , $12H_2O$ dans 500 cm³ d'eau (solution *A*). A 50,0 cm³ de solution *A* on ajoute 200 cm³ d'eau (solution *B*). On demande :

- 1) Quelles sont les concentrations molaire et massique de Na₃PO₄,12H₂O dans la solution A?
- 2) Quelles sont les concentration molaire et massique de Na₃PO₄,12H₂O dans la solution *B*?
- 3) Quelles sont les concentration molaire et massique en ions sodium dans la solution *B*?
- 4) Quel volume (V) de la solution *B*, exprimé en mL, faut-il prélever pour avoir 100,0 mg d'ions sodium dans la prise d'essai?


Rappel

Solution = mélange homogène d'au moins 2 constituants: le <u>solvant</u> (le composé présent en plus grande quantité) + un ou plusieurs composés appelés solutés

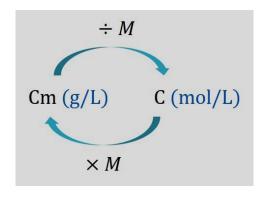
Concentration = expression qui permet de chiffrer la quantité de soluté présent dans une solution par unité de volume

Concentration massique Cm ou t
$$C_m(g/L \text{ ou } g.L^{-1}) = \frac{m_{solut\acute{e}}(g)}{V_{solution}(L)}$$

Concentration **molaire** C ou []
$$C(\text{mol/L ou mol.}L^{-1} \text{ ou M}) = \frac{n_{soluté} \text{ (mol)}}{V_{solution} \text{ (}L\text{)}}$$

- Ne pas confondre **M** unité de concentration molaire avec la masse molaire
- V solution = **Volume total**

$m = 22,0 \text{ g Na}_3 PO_4$, $12H_2 O$ dans 500 cm^3 d'eau (solution A)


• 1) C_A et Cm_A de Na₃PO₄,12H₂O?

$$c_A = \frac{n_{solut\acute{e}}(\text{mol})}{V_{solution}(L)} \qquad \text{et} \qquad n_{solut\acute{e}} = \frac{m_{solut\acute{e}}(g)}{M (g/mol)}$$


$$M(Na_3PO_4, \frac{12 H_2O}{12 M_2O}) = 3 \times 23.0 + 31.0 + 4 \times 16.0 + \frac{12 \times (2 \times 1.0 + 16.0)}{12 \times (2 \times 1.0 + 16.0)} = 380.0 \text{ g/mol}$$

$$C_A(Na_3PO_4, 12H_2O) = \frac{m}{V \times M} = \frac{22.0}{0.5 \times 380} = 0.116 \text{ M}$$
 avec $V_{\text{solution A}} = 500 \text{ cm}^3 = 500 \text{ mL} = 0.5 \text{ L}$

$$C_{mA(Na_3PO_4, 12H_2O)} = \frac{m_{soluté}(g)}{V_{solution}(L)} = \frac{22,0}{0,5} = 44,0 \text{ g/L}$$

 $m = 22,0 \text{ g Na}_3\text{PO}_4$, $12\text{H}_2\text{O}$ dans 500 cm^3 d'eau (solution A) = $50,0 \text{ cm}^3$ de solution A + 200 cm^3 d'eau = solution B

• 2) C_B et Cm_B de Na_3PO_4 , $12H_2O$?

$$C_{B(\text{Na}_{3}\text{PO}_{4}, 12\text{H}_{2}\text{O})} = \frac{n_{solut\acute{e}}}{V_{solution}} = \frac{C_{A} \times V_{A}}{V_{T}} = \frac{0.116 \times 50.10^{-3}}{(200+50).10^{-3}}$$

$$C_B(\text{Na}_3\text{PO}_4, 12\text{H}_2\text{O}) = C_A \times \frac{1}{5} = \frac{0,116}{5} = 0,023 \text{ M}$$

$$C_{mB}(Na_3PO_4, 12H_2O) = C_B \times M = 8.8 \text{ g/L}$$

avec
$$V_A$$
 = Volume de solution A prélevé
= 50 mL
 V_T = Volume total = 50 + 200 mL

• 3) $[Na^+]_B$ et $Cm_{B(Na+)}$

En solution:
$$Na_3PO_{4,}12 H_2O(aq) \longrightarrow 3 Na^+(aq) + PO_4^{3-}(aq)$$

$$\frac{n_{\text{Na}_3\text{PO}_4,12\,H_2O}}{1} = \frac{n_{Na^+}}{3}$$

$$n_{Na^+} = 3n_{Na_3PO_4,12H_2O}$$
 $\implies [Na^+]_B = 3 \times [Na_3PO_4,12H_2O]_B = 3 \times 0.023 = 0.069 \text{ M}$

$$C_{mB(Na^+)} = [Na^+]_B \times M(Na) = 0.069 \times 23 = 1.6 \text{ g/L}$$

• 4) V mL solution B correspondant à $m_{Na+} = 100,0$ mg

$$C_{mB(Na^+)} = 1.6 \text{ g/L} = \frac{m}{V}$$

$$V = \frac{m}{C_{mB(Na^+)}} = \frac{100.10^{-3}}{1.6} = 0.0626 L = 62.6 mL$$

Exercice 6 : Enoncé

- 1) Le sérum physiologique est une solution de chlorure de sodium NaCl à 0,9 % (m/v). On dispose de 50 mL d'une solution S de NaCl à 200 mmol/L.
- a) Montrer que cette solution n'est pas du sérum physiologique.
- b) Quelle quantité en milligramme manque-t-il ou est en trop par rapport à une solution de sérum physiologique?
- 2) Un laboratoire pharmaceutique commercialise deux préparations ophtalmiques selon les formulations cidessous. Calculer la concentration en % (m/V) des 3 principes actifs dans chaque préparation.

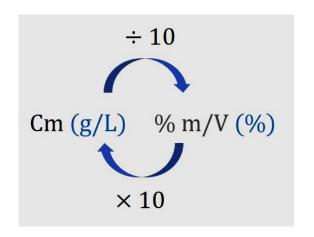
Formule A	Formule B
Dexamethasone	10 mg
Sulfate de Polymyxine	600 000 U
	350 mg
Hypromellose	
Chlorure de sodium500 mg	Mannitol
	Mannitol
Chlorure de sodium500 mg	
Chlorure de sodium500 mg Polysorbate 2020 mg	Carbomère 974

Dexamethasone	Sulfate de Polymyxine	Sulfate de Néomycine
Corticoïde Thermostable Solubilité dans l'eau 100 µg/ml pH de stabilité 5 à 8	Antibiotique 1 mg = 6 000 UI Thermostable Solubilité dans l'eau 50 mg/ml pH de stabilité 3 à 5	Antibiotique Thermostable Solubilité dans l'eau 6,3 mg/m pH de stabilité 2 à 9

Rappel

Pourcentage massique (m/m): % massique (%) = $\frac{m_{soluté}(g)}{m_{solution}(g)} \times 100$

Pourcentage massique (m/v): % massique (%) = $\frac{m_{soluté}(g)}{V_{solution}(mL)} \times 100$



Deux notions très proches : Cm et % massique (m/v)

- **Cm** en g/1000 mL
- % (m/V) en g/100 mL

$$>$$
 si Cm = 1g/L alors %(m/V) = 0,1%

$$>$$
 si %(m/V) = 1% alors Cm = 10g/L

Sérum physiologique = NaCl à 0,9 % (m/v)

Solution $S: C_{NaCl} = 200 \text{ mmol/L}$

• 1a) *S* ≠ sérum physiologique?

Sérum phy = NaCl à 0,9 % (m/v) ⇒ 0,9 g pour 100 mL de solution ⇒ 9 g pour 1000 mL ⇒ Cm = 9 g/L

$$C_{s\acute{e}rum\ phy} = \frac{C_m}{M(NaCl)} = \frac{9}{(23+35,5)} = 0.154 \text{ mol/L} = \frac{154 \text{ mmol/L}}{154 \text{ mol/L}}$$

Sérum physiologique : 154 mM \neq **S**: 200 mM

• 1b) Quantité manquante ou en excès dans 50 mL de solution S?

Sérum physiologique : 154 mM et S: 200 mM

[S]

[sérum physiologique]

50 mL à 200 mM

$$n_{NaCl} = C \times V$$

 $m_{NaCl} = C \times V \times M(NaCl)$
 $m_{NaCl} = 0.2 \times 0.05 \times 58.5$
 $m_{NaCl} = 0.585 g$

50 mL à 154 mM

$$m'_{NaCl} = C \times V \times M(NaCl)$$

 $m'_{NaCl} = 0,154 \times 0,05 \times 58,5$
 $m'_{NaCl} = 0,451 g$

 $\Delta m = m_{NaCl} - m'_{NaCl} = 0.134 g = 134 mg en excès dans la solution S$

• 2) Préparation ophtalmique: Concentration en % (m/V) des principes actifs dans chaque préparation.

Formule A	Formule B	
Dexamethasone	10 mg	
Sulfate de Polymyxine		
Sulfate de Néomycine	350 mg	
	Manaital	
Chlorure de sodium500 mg	Mannitol	
Chlorure de sodium500 mg Polysorbate 2020 mg	Carbomère 97410 %	
Chlorure de sodium500 mg Polysorbate 2020 mg Chlorure de benzalkonium1mg	Carbomère 974	
Hypromellose	Carbomère 97410 %	

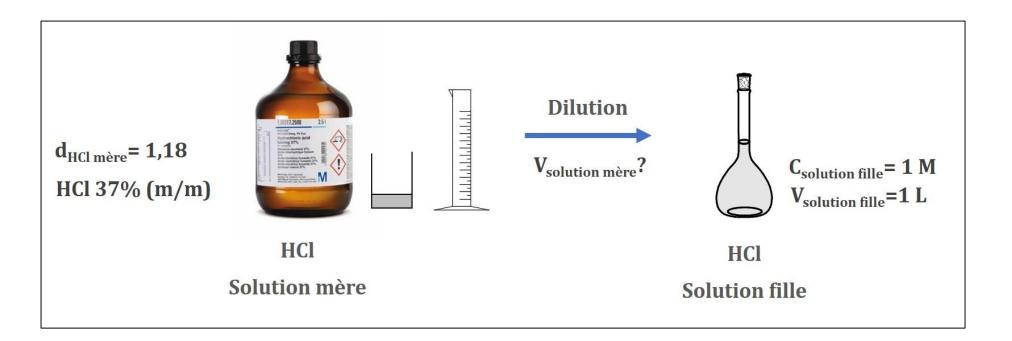
qsp = quantité suffisante pour

Dexamethasone	Sulfate de Polymyxine	Sulfate de Néomycine
Corticoïde Thermostable Solubilité dans l'eau 100 µg/ml pH de stabilité 5 à 8	Antibiotique 1 mg = 6 000 UI Thermostable Solubilité dans l'eau 50 mg/ml pH de stabilité 3 à 5	Antibiotique Thermostable Solubilité dans l'eau 6,3 mg/m pH de stabilité 2 à 9

- V total solution = 100 mL dans formules A et B
- **Dexamethasone**:

10 mg
$$\Leftrightarrow$$
 100 mL formules A et B
0,01 g \Leftrightarrow 100 mL $%$ (m/V) = 0,01 $%$

Sulfate de polymyxine :


1 mg = 6000 UI
$$\Rightarrow$$
 600 000 UI = 100 mg = 0,1 g
0,1 g \Leftrightarrow 100 mL $\%$ (m/V) = 0,1 %

Sulfate de néomycine :

350 mg
$$\Leftrightarrow$$
 100 mL formules A et B
0,350 g \Leftrightarrow 100 mL $\%$ (m/V) = 0,35 $\%$

Exercice 7 : Enoncé

• 1) Quel volume (V) de solution concentrée commerciale d'acide chlorhydrique (37 % (m/m), densité = 1,18), exprimé en **mL**, faut-il prélever pour préparer un litre d'acide chlorhydrique 1M ?

• 2) En déduire le facteur de dilution F.

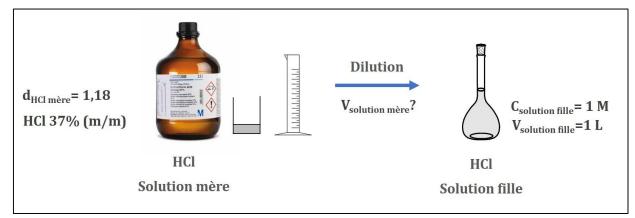
Rappel

Masse volumique:
$$\rho_{ech}(Kg/m^3) = \frac{m_{ech}(Kg)}{V_{ech}(m^3)}$$

$$\rho_{eau}(4^{\circ}C) = 1000 \text{ Kg/m}^3 = 1 \text{ Kg/L}$$

$$= 1 \text{ g/cm}^3 = 1 \text{ g/mL}$$

$$d_{ech} = \frac{\rho_{ech}(kg/m^3)}{\rho_{eau}(4^{\circ}C)(kg/m^3)} \implies \rho_{ech} = d_{ech} \text{ si } \rho \text{ en } \text{ g/cm}^3 \text{ ou g/mL ou Kg/L ou Kg/dm}^3$$
 (pas d'unité)


Rappel

Solution mère (solution concentrée) Solution fille (solution concentrée)
$$n_{soluté \, mère} = n_{soluté \, fille}$$

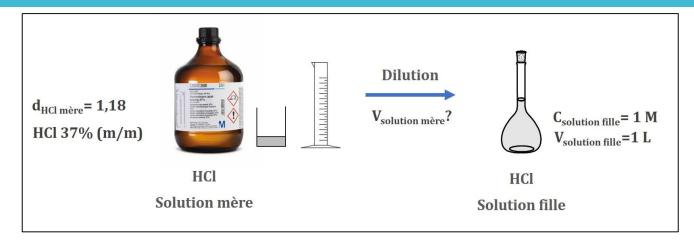
$$C_{solution \, mère} \times V_{solution \, mère} = C_{solution \, fille} \times V_{solution \, fille}$$

Dilution:
$$V_{solution \ m\`ere}(L) = \frac{C_{solution \ fille}(mol/L) \times V_{solution \ fille}(L)}{C_{solution \ m\`ere}(mol/L)}$$
Facteur de dilution:
$$F = \frac{C_{solution \ m\`ere}}{C_{solution \ fille}} = \frac{V_{solution \ fille}}{V_{solution \ m\`ere}}$$
(pas d'unité)

• 1)

$$V_{solution \; m\`{e}re} = \frac{C_{solution \; fille} \times V_{solution \; fille}}{C_{solution \; m\`{e}re}}$$

Calcul en 3 étapes :


• <u>étape 1</u>: calcul de la concentration massique Cm de la solution mère d'HCl

$$\rho_{(solution\;HCl\;m\`{\rm e}re)} = d_{(solution\;HCl\;m\`{\rm e}re)} = 1,18\;{\rm g/cm^3} = 1,18\;{\rm g/mL} = 1,18.10^3\;{\rm g/L}$$

% massique =
$$37 = \frac{m_{solut\acute{e}}(g)}{m_{solution}(g)} \times 100$$

Dans 1L:
$$m_{soluté\,HCl} = \frac{37 \times m_{solution}}{100} = \frac{37 \times 1,18.10^3}{100} = 436,6 \text{ g HCl}$$
 \Rightarrow Cm = 436,6 g/L

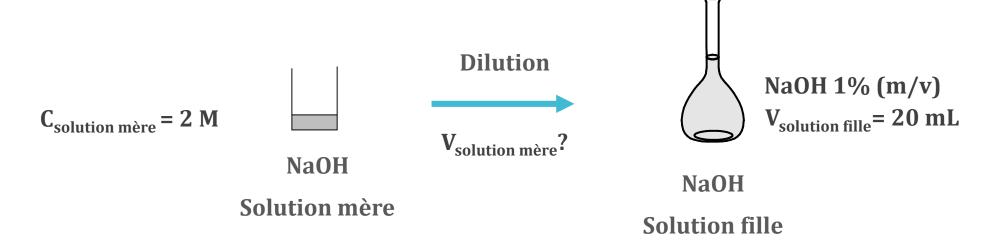
• 1)

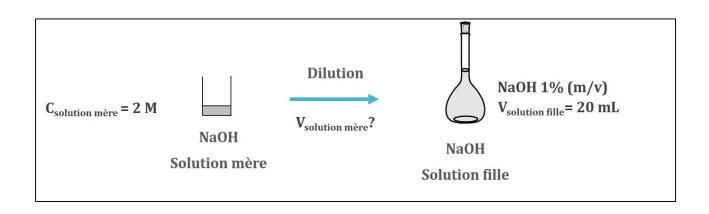
$$V_{solution \; m\`{e}re} = \frac{C_{solution \; fille} \times V_{solution \; fille}}{C_{solution \; m\`{e}re}}$$

• <u>étape 2</u>: calcul de la concentration molaire C de la solution mère d'HCl

$$C_{HCl\ m\`{e}re} = \frac{C_m}{M(HCl)} = \frac{436,6}{(1+35,5)} \cong 12 \text{ mol/L}$$

· <u>étape 3</u>: calcul de V solution mère d'HCl à prélever


$$V_{HCl \, solution \, m\`ere} = \frac{C_{solution \, fille} \times V_{solution \, fille}}{C_{solution \, m\`ere}} = \frac{1 \times 1}{12} \cong 0,084 \, L = 84 \, mL$$

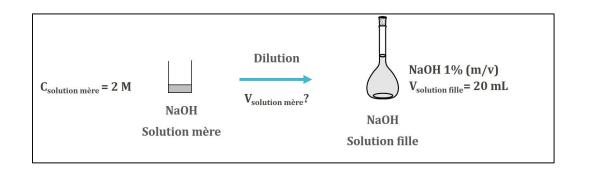

• 2) Facteur de dilution

$$F = \frac{C_{solution \ m\`ere}}{C_{solution \ fille}} = \frac{12}{1} = 12$$

Exercice 8: Enoncé

- Concernant la préparation de 20 mL d'une solution aqueuse de NaOH à 1% (m/v) à partir d'une solution commerciale NaOH à 2M
 - A) Une solution aqueuse de NaOH à 1% (m/v) correspond à une concentration massique de 0,1 g/L
 - o B) Une solution aqueuse de NaOH à 1% (m/v) correspond à une concentration massique de 10 g/L
 - C) Le volume de solution commerciale à prélever est de 2,5 mL
 - O D) Le volume de solution commerciale à prélever est de 0,25 mL
 - o E) Aucune des précédentes propositions n'est exacte.

$$V_{solution \; m\`{e}re} = rac{C_{solution \; fille} \times V_{solution \; fille}}{C_{solution \; m\`{e}re}}$$


• <u>étape 1</u>: calcul de la concentration massique Cm de la solution fille NaOH

NaOH à 1 % (m/v) ⇒ 1 g pour 100 mL de solution ⇒ 10 g pour 1000 mL

 \Rightarrow Cm = 10 g/L

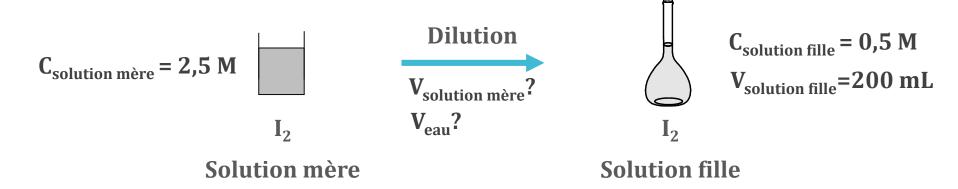
• <u>étape 2</u>: calcul de la concentration molaire C de la solution fille NaOH

$$C_{\text{NH}_3fille} = \frac{C_m}{M(\text{NaOH})} = \frac{10}{(23 + 16 + 1)} = 0.25 \text{ mol/L}$$

$$V_{solution \ m\`ere} = rac{C_{solution \ fille} \times V_{solution \ fille}}{C_{solution \ m\`ere}}$$

Respecter les unités! V en litre C en mol/L

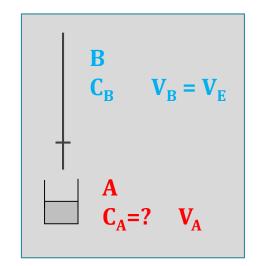
• <u>étape 3</u>: calcul de V solution mère NH₃ à prélever


$$V_{\text{NaOH}solution\ m\`{e}re} = \frac{C_{solution\ fille} \times V_{solution\ fille}}{C_{solution\ m\`{e}re}} = \frac{0.25 \times 20.10^{-3}}{2.0} = 2.5.10^{-3}\ L = 2.5\ mL$$

- A) Une solution aqueuse de NaOH à 1% (m/v) correspond à une concentration massique de 0,1 g/L
- X B) Une solution aqueuse de NaOH à 1% (m/v) correspond à une concentration massique de 10 g/L
- X C) Le volume de solution commerciale à prélever est de 2,5 mL
- o D) Le volume de solution commerciale à prélever est de 0,25 mL
- E) Aucune des précédentes propositions n'est exacte.

Exercice 9 : Enoncé

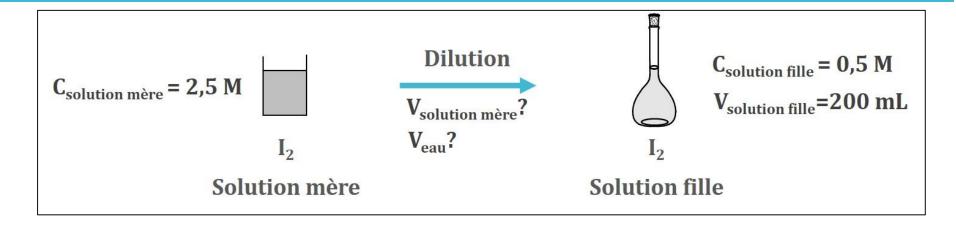
• 1) On dispose d'une solution de diiode I₂ à 2,5 M et on désire réaliser une solution de molarité 0,5 M. Quels volumes de solution de diiode et d'eau faut-il prélever pour obtenir 200 mL de solution? Quel est le facteur de dilution?


• 2) On utilise 10 mL de la solution diluée de diiode (0,5 M) pour **doser** une solution de thiosulfate de sodium Na₂S₂O₃. Le volume versé à l'équivalence est de 10 mL. Calculer la concentration en thiosulfate de sodium?

On donne:
$$I_2 + 2 e^{-}$$
 $2 I^{-}$ $2S_2O_3^{2-}$ $S_4O_6^{2-} + 2 e^{-}$

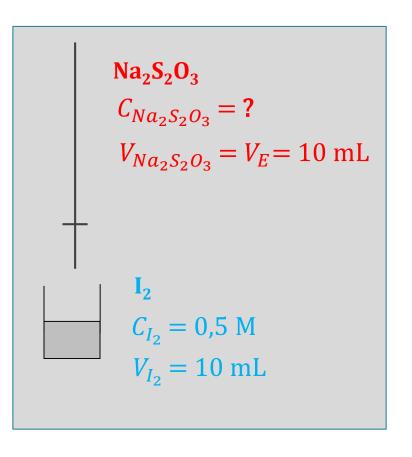
• <u>Rappel:</u> Dosage par titrage

Titrage de A par B:
$$a A + b B \longrightarrow c C + d D$$


A l'équivalence:
$$\frac{n_{(A)}}{a} = \frac{n_{(B)}}{b} \implies \frac{C_{(A)} \times V_{(A)}}{a} = \frac{C_{(B)} \times V_{(B)}}{b}$$

 $C_{(A)}$ et $C_{(B)}$ en mol/L $V_{(A)}$ et $V_{(B)}$ en L

• 1]



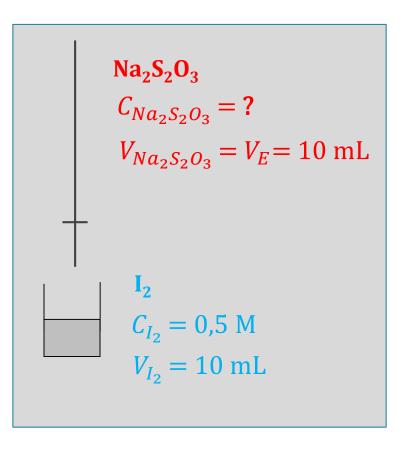
$$V_{I_2 solution \ m\`ere} = \frac{C_{solution \ fille} \times V_{solution \ fille}}{C_{solution \ m\`ere}} = \frac{0.5 \times 200. \ 10^{-3}}{2.5} = \ 0.040 \ L = 40 \ mL$$

$$V_{H_2O} = 200 - 40 = 160 \text{ mL}$$

$$F = \frac{C_{solution\ m\`ere}}{C_{solution\ fille}} = \frac{2.5}{0.5} = 5$$

• 2) Titrage

• <u>étape 1</u>: Equation de la réaction de dosage


$$Na_2 S_2 O_3(aq) \longrightarrow S_2 O_3^{2-}(aq) + 2 Na^+(aq)$$

$$I_2(aq) + 2 e^- \implies 2 I^-(aq)$$

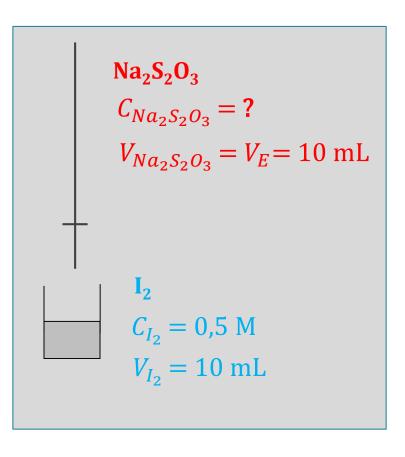
 $2 S_2 O_3^{2-}(aq) \implies S_4 O_6^{2-}(aq) + 2 e^-$

Réaction d'oxydoréduction:

$$I_2(aq) + 2 S_2 O_3^{2-}(aq) \longrightarrow 2 I^{-}(aq) + S_4 O_6^{2-}(aq)$$

• 2) Titrage

• <u>étape 2</u>: Relation à l'équivalence


$$\frac{I_{2}(aq) + 2 S_{2}O_{3}^{2}(aq) \longrightarrow 2 I^{-}(aq) + S_{4}O_{6}^{2}(aq)}{\frac{n_{(I_{2})}}{1}} = \frac{n_{(S_{2}O_{3}^{2})}}{2}$$

$$Na_{2} S_{2}O_{3}(aq) \longrightarrow S_{2}O_{3}^{2}(aq) + 2 Na^{+}(aq)$$

$$\frac{n_{Na_{2}S_{2}O_{3}}}{1} = \frac{n_{S_{2}O_{3}^{2}}}{1}$$

$$\Rightarrow \frac{n_{(I_{2})}}{1} = \frac{n_{(Na_{2}S_{2}O_{3})}}{2}$$

• 2) Titrage

• <u>étape 3</u>: Calcul de C_{Na₂S₂O₃}

$$\frac{C_{I_2} \times V_{I_2}}{1} = \frac{C_{Na_2S_2O_3} \times V_E}{2}$$

$$C_{Na_2S_2O_3} = \frac{2 C_{I_2} \times V_{I_2}}{V_E} = \frac{2 \times 0.5 \times 10.10^{-3}}{10.10^{-3}} = 1.0 \text{ M}$$

Bilan

- Savoir calculer une masse molaire (Exos 1 à 8)
- Savoir pondérer une réaction (Exos 3, 9)
- Savoir calculer une grandeur à partir de données : quantité de matière n, masse m, concentration molaire et massique, % m/V, % m/m, rendement d'une réaction (Exos 1 à 8)
- Connaître les relations entre la masse m et la quantité de matière n, entre la concentration molaire et la concentration massique (Exos 1 à 6)
- Savoir calculer la concentration d'une solution diluée et le facteur de dilution, savoir préparer une solution diluée à partir d'une solution concentrée, (Exos 5, 7 à 9)
- Connaître les correspondances mL-cm³, L-dm³...et les conversions mL en L, mmol en mol...
- Savoir calculer une concentration à partir d'un titrage (Exo 9)

Merci pour votre attention

Dr Marylène CHOLLET-KRUGLER / UFR Pharmacie / Rennes

UFR Pharmacie - Rennes

Une question... Une précision... RDV sur le forum

UFR Pharmacie - Rennes

Dr Marylène CHOLLET-KRUGLER / UFR Pharmacie / Rennes