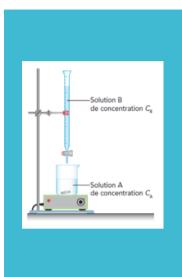
UE 8 Pharmacie Cours Chimie Analytique



Dr Marylène CHOLLET-KRUGLER / UFR Pharmacie / Rennes

Mars 2023

"Ce document est la propriété exclusive de Marylène CHOLLET-KRUGLER et ne saurait être utilisé, reproduit, représenté, transmis ou divulgué sans son accord préalable et explicite"

Cours 1 et 2 : Titrages acide-base en milieu aqueux

- Savoir si un titrage acide-base est possible (rappel du TD2 acidimétrie)
- Connaître les différents modes de titrage, les techniques pour objectiver un volume équivalent...
- Connaître les propriétés d'un indicateur coloré
- Savoir calculer le pH au cours d'une réaction de neutralisation AF/BF ou BF/AF, Af/BF ou Bf/AF
- Savoir prédire le nombre de sauts de pH au cours de la neutralisation
 - d'un mélange d'acides ou polyacide/BF
 - d'un mélange de bases ou polybase/AF
- Savoir prédire la réaction de dosage d'un acide aminé ou d'un composé amphotère

III-3 Neutralisation d'un acide faible (Af) par une base forte (BF)

Exercice d'application 2

Considérons le titrage de 40 mL d'une solution d'acide cyanhydrique 0,05 M (pKa = 9,3) par une solution d'hydroxyde de potassium 0,1 M.

Quel est le pH au point équivalent?

Quel indicateur coloré conviendrait le mieux pour détecter le point équivalent de ce titrage?

Zone de virage/pH

☐ Jaune de méthyle	2,9 - 4
☐ Vert de bromocrésol	3,8 - 5,4
☐ Rouge de méthyle	4,2 - 6,3
☐ Jaune d'alizarine	10 - 12
☐ Bleu de bromothymol	6,2 - 7,6

III-3 Neutralisation d'un acide faible (Af) par une base forte (BF)

Zone de virage/pH

2.9 - 4

3,8 - 5,4

- Réaction de neutralisation

$$HCN + KOH \longrightarrow CN^- + K^+ + H_2O$$

- Calcul du V_E

A l'équivalence:
$$\frac{n_{(HCN)}}{1} = \frac{n_{(KOH)}}{1}$$

$$\frac{n_{(HCN)}}{1} = \frac{n_{(KOH)}}{1}$$

$$\Rightarrow C_0 \times V_0 = C \times V_E$$

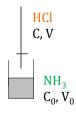
☐ Jaune de méthyle

☐ Rouge de méthyle X Jaune d'alizarine

☐ Vert de bromocrésol

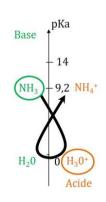
☐ Bleu de bromothymol

$$V_E = \frac{C_0 \times V_0}{C} = \frac{0.05 \times 40.10^{-3}}{0.1} = 0.020 \text{ L} = 20 \text{ mL}$$


- Calcul du pH à l'équivalence

pH d'une base faible:
$$pH = 7 + \frac{1}{2}pKa + \frac{1}{2}\log\left(\frac{C_0V_0}{V_0 + V}\right) = 7 + \frac{1}{2} \times 9.3 + \frac{1}{2}\log\left(\frac{0.05 \times 40}{40 + 20}\right) = 10.91$$

Virage de l'indicateur en milieu basique

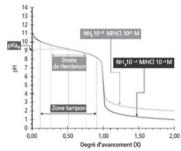

III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)

Ex: Neutralisation de NH₃ (pKa = 9,2) par HCl

- ➤ HCl: acide fort (AF)
- ➤ NH₃: Base faible (Bf)
- \triangleright Réaction neutralisation totale $\triangle pKa = 9,2 0 = 9,2 ≥ 4$

$$NH_3 + H_3O^+ + Cl^- \longrightarrow NH_4^+ + H_2O + Cl^-$$

III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)



- ➤ Titrage symétrique au dosage Af/BF (avec $C_{AF} \ge 10^{-5}$ M et B>>BH+)
 - Au point initial: solution base faible

avec formule simplifiée: vérifier $[OH^-] \ge 10 [H_3O^+]$ et $pH \ge pKa + 1$

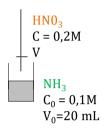
- Avant point d'équivalence : solution tampon
- Au point de demi-équivalence : **pH = pKa**
- Au point d'équivalence : solution acide faible
- Après point d'équivalence : solution acide fort
- Utilisation d'un indicateur coloré qui vire en milieu acide

Figure 9: Courbe neutralisation NH₃/HCl Source : M. Guernet et al., 2006.

7

III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)

Exercice d'application 3


Une solution contenant 20 mL d'ammoniac 0,1 M (pKa = 9,2) est dosée par une solution d'acide nitrique 0,2 M.

- 1) Calculer le pH des solutions obtenues après addition de : 0,0; 2,5; 5,0; 9,5; 10; 10,5 et 15 mL d'acide nitrique.
- 2) Parmi les indicateurs colorés suivant, quel est celui qui conviendrait le mieux pour détecter le point équivalent?

Zone de virage/pH

- □ Phénolphtaléine
 □ Rouge de phénol
 □ Bleu de bromothymol
 6,2 7,6
- ☐ Bleu de bromothymol
 ☐ Bleu de thymol
 6,2 7,6
 ☐ 1,2 2,8 et 8 9,6
- \square Rouge de méthyle 4,2 6,3

III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)

1- HNO₃: acide fort (AF) NH₃: Base faible (Bf)

2- Réaction neutralisation:

$$NH_3 + H_3O^+ + NO_3^- \longrightarrow NH_4^+ + H_2O + NO_3^-$$

3- Calcul du $V_{\rm E}$

A l'équivalence:
$$\frac{n_{(NH_3)}}{1} = \frac{n_{(H_3O^+)}}{1} \implies C_0 \times V_0 = C \times V_E$$
$$V_E = \frac{C_0 \times V_0}{C} = \frac{0.1 \times 20.10^{-3}}{0.2} = 0.010 \text{ L} = 10 \text{ mL}$$

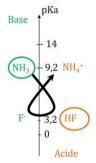
III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)

	NH ₃ +	H ₃ 0 ⁺ + NO ₃ ⁻ — Espèce spectatrice	→ NH ₄ + + H	20 + NO ₃ - Bilan
Etat initial	$C_0 = 0,1$	0	0	$pH = 7 + \frac{1}{2} \times 9.2 + \frac{1}{2} \log(0.1) = 11.1$ $(OH) \ge 10 [H_3O^*]$ $pH \ge pKa + 1 = 10.2$
Avant pt Eq. V = 2,5 mL V = 5 mL V = 9,5 mL	$\frac{C_0V_0 - CV}{V_0 + V}$	0	$\frac{CV}{V_0 + V}$	$V = 2.5 \text{ mL}$ $pH = pKa + \log\left(\frac{C_0V_0 - CV}{CV}\right) = 9.2 + \log\left(\frac{0.1 \times 20 - 0.2 \times 2.5}{0.2 \times 2.5}\right) = 9.7$ $V = 5 \text{ mL} pH = pKa = 9.2$ $V = 9.5 \text{ mL} pH = 7.9$
Au pt Eq. V = 10 mL	0	0	$\frac{C_0 V_0}{V_0 + V}$	$pH = \frac{1}{2}pKa - \frac{1}{2}\log\left(\frac{C_0V_0}{V_0 + V}\right) = \frac{1}{2} \times 9, 2 - \frac{1}{2}\log\left(\frac{0,1 \times 20}{20 + 10}\right) = 5, 2$
Après pt Eq. V = 10,5 mL V = 15 mL	0	$\frac{CV - C_0 V_0}{V_0 + V}$	$\frac{C_0 V_0}{V_0 + V}$	

III-4 Neutralisation d'une base faible (Bf) par un acide fort (AF)

2) indicateur coloré?

A l'équivalence : pH = 5,2


- ☐ Phénolphtaléine
- ☐ Rouge de phénol
- □ Bleu de bromothymol□ Bleu de thymol
- Rouge de méthyle
- Zone de virage/pH
- 8,3 10
 - 6,8 8,4 6,2 - 7,6
 - 12-28 et 8 9,6
 - 4,2 6,3

1

III-5 Neutralisation d'un acide faible (Af) par une base faible (Bf)

Ex : Neutralisation HF (pKa₁ = 3,2) par NH_3 (pKa₂ = 9,2)

Réaction suffisamment déplacée vers la droite car $\Delta pKa \ge 4$

- > Au pt Eq. : mélange Af et Bf à la même concentration soit $pH = \frac{1}{2}(pka_1 + pka_2)$ (ici = 6,2)
- Dosage peu courant

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

Mélange d'acides forts AF

Soit le mélange de 2 acides forts AF1 (C_{AF1}) + AF2 (C_{AF2}) dosés par une base forte :

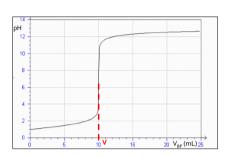
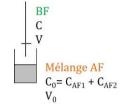



Figure 10: Courbe neutralisation mélange acides forts/BF

1 seul saut de pH car impossible de doser séparément les AF : courbe de neutralisation identique à celle d'un AF avec C₀ = C_{AF1}+ C_{AF2}

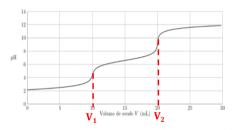
 $\mathbf{V} = V_E$ pour le dosage de $AF_1 + AF_2$

13

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

Mélange d'acides faibles Af (pKa ≤ 10)

Soit le mélange de 2 acides faibles $Af_1(C_{Af1}, pKa_1) + Af_2(C_{Af2}, pKa_2)$ dosés par une base forte :

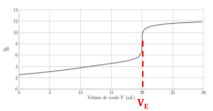

> si pKa₂ - pKa₁ ≥ 4 : 2 sauts de pH

Dosage séquentiel, c'est l'acide le plus fort des deux qui est titré en premier soit Af_1 (quelque soit sa concentration) puis Af_2

 $V1 = V_E$ pour le dosage de Af_1

 $V2 = V_E$ pour le dosage de $Af_1 + Af_2$

 $V2 - V1 = V_E$ pour le dosage de Af_2



Figures 11: Courbe neutralisation mélange acides faibles (pKa $_2$ - pKa $_1\!\!\!>\!\!\!4)$ /BF

Ex : Dosage mélange CH_3COOH (CH_3COOH / CH_3COO^- pKa = 4,8) + H_3BO_3 (H_3BO_3 / $B(OH)_4$ pKa = 9,2) par NaOH

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

- **si pKa₂ pKa₁ < 4**: 1 saut de pH
- Pas de dosage séquentiel, dosages des 2 acides faibles avec V_F = vol de BF au point d'équivalence

Figures 12: Courbe neutralisation mélange acides faibles $(pKa_2 - pKa_1 < 4) / BF$

- Mélange d'acides fort AF et faible Af (4≤ pKa ≤ 10)
 - 2 sauts de pH avec AF dosé en premier
- Mélange d'acides fort AF et faible Af (0≤ pKa ≤ 4)
 - 1 saut de pH avec les 2 acides dosés en même temps

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

- Polvacide
- Raisonnement identique sachant qu'un polyacide est un mélange d'acides fort et faible ou un mélange d'acides faibles à la même conc.

Ex: acide phosphorique H₃PO₄: triacide faible

$$pKa_1 = 2,1 (H_3PO_4 / H_2PO_4)$$

$$pKa_2 = 7.2 (H_2PO_4^{-} / HPO_4^{2-})$$
 $pKa_3 = 12.4 (HPO_4^{2-} / PO_4^{3-})$

$$pKa_3 = 12,4 (HPO_4^{2-} / PO_4^{3-})$$

➤ Réactions de dosage H₃PO₄/NaOH

$$H_3PO_4 + NaOH \longrightarrow H_2PO_4 + Na^+ + H_2O$$

$$pKa_{NaOH} - pKa_1 = 12,9$$
 Réaction totale

$$H_2PO_4^- + NaOH \longrightarrow HPO_4^{2-} + Na^+ + H_2O$$

$$pKa_{NaOH} - pKa_2 = 6.8$$
 Réaction totale

$$HPO_4^{2-} + NaOH \implies PO_4^{3-} + Na^+ + H_2O$$

$$HPO_4^{2-} + NaOH \longrightarrow PO_4^{3-} + Na^+ + H_2O$$
 $pKa_{NaOH} - pKa_3 = 1,6 < 4$ Réaction équilibrée

et
$$pKa_2$$
 - pKa_1 = 5,1 ≥ 4 \implies 2 sauts de pH correspondant au dosage des 2 premières acidités

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

➤ Courbe de neutralisation H₃PO₄/NaOH:

 $pKa_1 = 2,1 (H_3PO_4 / H_2PO_4^-)$ $pKa_2 = 7,2 (H_2PO_4^- / HPO_4^2^-)$ $pKa_3 = 12,4 (HPO_4^2^- / PO_4^3^-)$ La neutralisation commence par l'acide le plus fort soit l'acide avec le pKa le plus faible

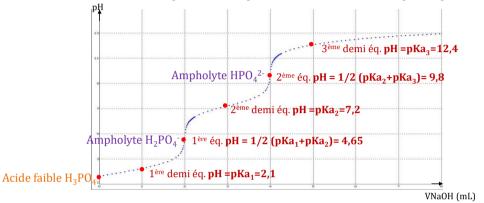


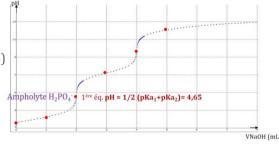
Figure 13: Courbe neutralisation H₃PO₄/NaOH

1

III-6 Neutralisation d'un mélange d'acides par une base forte (BF)

Exercice d'application 4 (concours OCM 2022)

L'acide phosphorique est un triacide de pK_a successifs : $pKa_1 = 2,1$; $pKa_2 = 7,2$; $pKa_3 = 12,4$. Quel(s) indicateur(s) coloré(s) conviendrait (aient) le mieux pour objectiver le premier point équivalent du titrage de l'acide phosphorique par NaOH?



■ B Rouge de méthyle (pH zone de virage : 4,2 – 6,3)

C Bleu de Thymol (pH zones de virage :1,2 - 2,8 et 8 - 9,6)

□ D Bleu de bromothymol (pH zone de virage 6,2 - 7,6)

☐ E Toutes les propositions précédentes sont fausses

III-7 Neutralisation d'un mélange de bases par un acide fort (AF)

Mélange de bases fortes BF

1 seul saut de pH car impossible de doser séparément les BF : courbe de neutralisation identique à celle d'une BF avec C_0 = C_{BF1} + C_{BF2} +...

Mélange d'une base forte BF et d'une base faible Bf (4≤ pKa ≤ 10)

2 sauts de pH avec BF dosée en premier

* Mélange de bases faibles Bf et polybases

Cas comparable à celui d'un mélange d'acides faibles

Mélange 2 bases faibles $Bf_1(C_{Bf1}, pKa_1) + Bf_2(C_{Bf2}, pKa_2) / AF$

- si pKa₂ pKa₁ ≥ 4 : 2 sauts de pH, neutralisation commence par la base la plus forte soit la base avec le pKa le plus élevé
- si pKa₂ pKa₁ < 4 : 1 saut de pH</p>

19

III-7 Neutralisation d'un mélange de bases par un acide fort (AF)

$$Na_2CO_3 \longrightarrow CO_3^{2-} + 2Na^+$$

➤ Réactions de dosage Na₂CO₃ / HCl

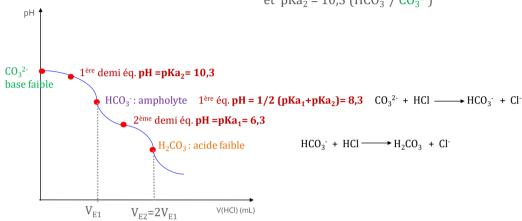
$${\rm CO_3^{~2^-} + H_3O^+ + Cl^-} \longrightarrow {\rm HCO_3^-} + {\rm H_2O} + {\rm Cl^-}$$

Ion carbonate

$$pKa_2-pKa_{HCI}=10,3$$
 Réaction totale

$$HCO_3^- + H_3O^+ + Cl^- \longrightarrow H_2CO_3 + H_2O + Cl^-$$
Acide carbonique

$$pKa_1 - pKa_{HCl} = 6.3$$
 Réaction totale


$$et pKa_2 - pKa_1 = 4$$

2 sauts de pH correspondant au dosage des 2 basicités

III-7 Neutralisation d'un mélange de bases par un acide fort (AF)

Courbe de neutralisation Na₂CO₃ / HCl

III-8 Neutralisation de composés plurifonctionnels : ampholytes, acides aminés

- Ampholytes
 - Sels d'acide faible et de base faible

Ex: Dihydrogénophosphate de sodium NaH₂PO₄

Couples
$$H_3PO_4$$
 / H_2PO_4 $PKa_1 = 2,1$ $PKa_2 = 7,2$ PO_4 PO_4 PO_4 PO_4 PO_4 PKa_2 PKa_3 PKa_4 PO_4 PKa_4 PVa_4 PVa_4

- \triangleright pH de départ = 1/2 (pKa₁ + pKa₂)
- En théorie, peuvent être titrés soit par une BF soit par un AF

Cas de H₂PO₄: en pratique ne peut être dosé que par une BF car

$$pKa_{BF}$$
 – pKa_{Af} = 14 - 7,2 ≥4 et pKa_{Bf} – pKa_{AF} = 2,1 - 0 ≤ 4

Réaction totale Réaction équilibrée

III-8 Neutralisation de composés plurifonctionnels : ampholytes, acides aminés

- Acides aminés
 - Contiennent simultanément une fonction acide faible et fonction base faible = espèce amphotère

$$pKa_2 \simeq 9,5$$

$$pKa_2 \simeq 9,5$$

$$C_{\alpha}H$$

$$pKa_1 \simeq 2$$

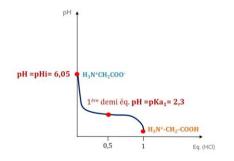
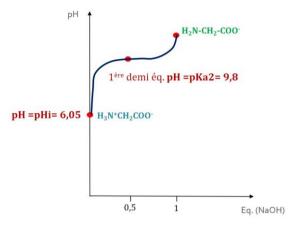

Ex: Glycine H_2NCH_2COOH Couples $COOH/CO_2$ $pKa_1 = 2,3$ H_3N^+/NH_2 $pKa_2 = 9,8$

Diagramme de prédominance des espèces en fonction du pH:

III-8 Neutralisation de composés plurifonctionnels : ampholytes, acides aminés

- En solution aqueuse, forme prédominante = zwitterion $H_3N^+CH_2COO^-$: $pHi = 1/2 (pKa_1 + pKa_2) = 6,05$
- Titrage possible soit par une BF soit par un AF
 - Courbe de neutralisation glycine /HCl



Réaction de titrage glycine /HCl:

$$H_3N^+CH_2COO^- + HCl \longrightarrow H_3N^+CH_2COOH + Cl^-$$

III-8 Neutralisation de composés plurifonctionnels : ampholytes, acides aminés

Courbe de neutralisation glycine /NaOH

Réaction de titrage glycine / NaOH:

$$H_3N^+CH_2COO^- + NaOH \longrightarrow NH_2CH_2COO^- + H_2O + Na^+$$

Bibliographie

- -M. Guernet, E. Guernet, C. Herrenknecht-Trottman, *Chimie Analytique Equilibres en solution*, Ed Dunod, Paris, 2006.
- J.L. Brisset et al., Chimie analytique en solution, Ed. Tec & Doc, Paris, 2005.
- D.A. Skoog, D.M. West, F.J. Holler, Crouch, Chimie Analytique, 3ème édition, Ed De Boeck Université, Bruxelles 2015.

Bilan

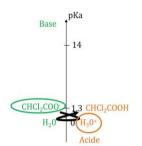
- Savoir si un titrage acide-base est possible (rappel du TD2 acidimétrie)
- Connaître les différents modes de titrage, les techniques pour objectiver un volume équivalent...
- Connaître les propriétés d'un indicateur coloré
- Savoir calculer le pH au cours d'une réaction de neutralisation AF/BF ou BF/AF, Af/BF ou Bf/AF
- Savoir prédire le nombre de sauts de pH au cours de la neutralisation
 - d'un mélange d'acides ou polyacide/BF
 - d'un mélange de bases ou polybase/AF
- Savoir prédire la réaction de dosage d'un acide aminé ou d'un composé amphotère

27

TD Titrages acide-base

Exercice 1

Donner pour les titrages en solutions aqueuses suivants le nombre de brusques variations de pH utilisables pour un titrage :


- a) titrage d'une solution de dichloroacétate de sodium par une solution d'acide chlorhydrique. $pKa (CHCl_2 COOH) = 1,3$
- b) titrage d'une solution d'acide arsenique H_3AsO_4 par une solution d'hydroxyde de sodium. $pKa_1 (H_3AsO_4) = 2,2 pKa_2 (H_2AsO_4^-) = 7,0 pKa_3 (HAsO_4^{2-}) = 11,5$
- c) titrage d'une solution d'éthylamine par une solution d'acide chlorhydrique. pKa $(C_2H_5NH_3^+)=10,7$
- d) titrage d'une solution de phosphate disodique par une solution d'hydroxyde de sodium. $pKa_2 (H_2PO_4^{-1}) = 7.2$ $pKa_3 (HPO_4^{-2}) = 12.4$
- e) titrage d'une solution d'acide adipique par une solution d'hydroxyde de sodium. acide adipique : $HOOC (CH_2)_4 COOH pKa_1 = 4,4 pKa_2 = 5,4$

a) Dichloroacétate de sodium CHCl₂COONa / HCl pKa (CHCl₂COOH) = 1,3

Réaction de dosage :

$$\mathsf{CHCl_2COO^-} \ + \ \ \mathsf{HCl} \quad \ \Longleftrightarrow \quad \ \mathsf{CHCl_2COOH} \ \ + \ \ \mathsf{Cl^-}$$

 Δ pKa = 1,3 - 0 = 1,3 < 4 **pas de brusque variation de pH**

29

Exercice 1

b)
$$H_3AsO_4/NaOH$$
 $pKa_1(H_3AsO_4) = 2.2 pKa_2(H_2AsO_4^-) = 7.0 pKa_3(HAsO_4^{2-}) = 11.5$

Réactions de dosage :

$$H_3AsO_4 + NaOH \longrightarrow H_2AsO_4 + H_2O + Na^+ \Delta_1pKa = 14 - 2,2 = 11,8 > 4$$

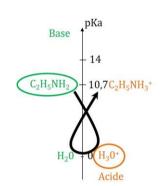
$$\text{H}_2\text{AsO}_4^-$$
 + NaOH \longrightarrow HAsO $_4^{2-}$ + H $_2\text{O}$ + Na $^+$ Δ_2 pKa = 14 - 7 = 7 > 4

$$HAsO_4^{2-}$$
 + $NaOH$ \iff AsO_4^{3-} + H_2O + Na^+ $\Delta_3pKa = 14 - 11,5 = 2,5 < 4$

$$\Delta_1$$
pKa et Δ_2 pKa > 4 et pKa₂ - pKa₁= 7-2,2 = 4,8>4

2 brusques variations de pH

c) éthylamine $C_2H_5NH_2$ /HCl pKa $(C_2H_5NH_3^+) = 10.7$


$$pKa (C_2H_5NH_3^+) = 10,7$$

Réaction de dosage:

$$C_2H_5NH_2 + HCl \longrightarrow C_2H_5NH_3^+ + Cl^-$$

$$\Delta$$
pKa = 10,7 - 0 = 10,7 > 4

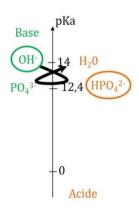
→ 1 brusque variation de pH

Exercice 1

d) phosphate disodique Na_2HPO_4 /NaOH $pKa_2 = 7.2 (H_2PO_4^- / HPO_4^{-2})$

$$pKa_2 = 7.2 (H_2PO_4^- / HPO_4^{2-1})$$

$$pKa_3 = 12,4 (HPO_4^2) PO_4^{3-}$$


$$\longrightarrow$$
 HPO₄²⁻ + 2Na⁺

Réaction de dosage :

$$HPO_4^{2-} + NaOH \longrightarrow PO_4^{3-} + H_2O + Na^+$$

$$\Delta$$
pKa = 14 - 12,4 = 1,6 < 4

pas de brusque variation de pH

e) acide adipique HOOC-(CH₂)₄-COOH /NaOH

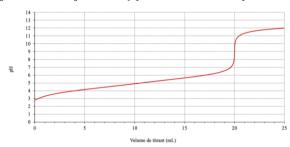
$$pKa_1 = 4,4$$
 $pKa_2 = 5,4$

Réactions de dosage :

HOOC-
$$(CH_2)_4$$
-COOH + NaOH \longrightarrow HOOC- $(CH_2)_4$ -COOH + H₂O + Na+ Δ_1 pKa = 14 - 4,4 = 9,6 > 4
HOOC- $(CH_2)_4$ -COOH + NaOH \longrightarrow -OOC- $(CH_2)_4$ -COOH + H₂O + Na+ Δ_2 pKa = 14 - 5,4 = 8,6 > 4

$$\Delta_1$$
pKa et Δ_2 pKa > 4 mais pKa₂ - pKa₁= 5,4 - 4,4 = 1<4

→ 1 seule brusque variation de pH


Soit réaction de dosage:

$$HOOC-(CH_2)_4-COOH + 2NaOH \longrightarrow -OOC-(CH_2)_4-COO^- + 2H_2O + 2Na^+$$

33

Exercice 2 (concours QCM 2021)

Considérons la courbe de titrage d'une solution aqueuse d'acide adipique HOOC- $(CH_2)_4$ -COOH (pKa₁ = 4,4 et pKa₂ = 5,4 ; C₀ = 0,04 M ; V₀ = 25 mL) par une solution aqueuse de NaOH (C = 0,1 M ; V)

- ☐ A Le saut de pH observé correspond à la neutralisation des deux protons acides.
- □ B Le premier saut n'est pas détectable car les pKa₁ et pKa₂ de cet acide sont trop proches
- \square C La relation à l'équivalence est : CV = $2C_0V_0$
- □ D La relation à l'équivalence est C_0V_0 =2CV
- ☐ E Toutes les propositions précédentes sont fausses

Exercice 2 (concours QCM 2021)

Réaction de dosage

$$HOOC-(CH_2)_4-COOH + 2NaOH \longrightarrow ^-OOC-(CH_2)_4-COO^- + 2H_2O + 2Na^+$$

A l'équivalence:
$$\frac{n_{(Ac.Adip.)}}{1} = \frac{n_{(NaOH)}}{2} \implies C_0 \times V_0 = \frac{C \times V}{2}$$

- 💢 A Le saut de pH observé correspond à la neutralisation des deux protons acides.
- $\begin{tabular}{ll} X & B & Le premier saut n'est pas détectable car les <math>\mathsf{pKa}_1$ et pKa_2 de cet acide sont trop proches
- \boxtimes C La relation à l'équivalence est : CV = $2C_0V_0$
- ☐ D La relation à l'équivalence est C₀V₀=2CV
- E Toutes les propositions précédentes sont fausses

35

Exercice 3

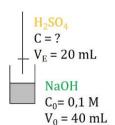
40~mL d'hydroxyde de sodium 0.1M sont neutralisés par 20~mL d'une solution d'acide sulfurique H_2SO_4 . Calculer la concentration en acide sulfurique.

pKa
$$(H_2SO_4) = 0$$
 pKa $(HSO_4^-) = 1.9$

➤ Dosage d'un diacide H₂SO₄ par une base forte NaOH

pKa
$$(H_2SO_4 / HSO_4^-) = 0$$
 pKa $(HSO_4^- / SO_4^{2-}) = 1,9$

Réactions de dosage


$$H_2SO_4 + NaOH \longrightarrow HSO_4 + Na^+ + H_2O \qquad \Delta_1 pKa = 14 - 0 = 14 > 4$$
 $HSO_4 + NaOH \longrightarrow SO_4^{2-} + Na^+ + H_2O \qquad \Delta_2 pKa = 14 - 1,9 = 12,1 > 4$

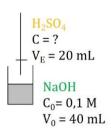
 Δ_1 pKa et Δ_2 pKa > 4 mais pKa₂ - pKa₁= 1,9 - 0 = 1,9 < 4

1 seule brusque variation de pH

Soit réaction de dosage:

$$H_2SO_4 + 2NaOH \longrightarrow SO_4^{2-} + 2H_2O + 2Na^+$$

37

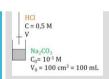

Exercice 3

Soit réaction de dosage:

$$H_2SO_4 + 2NaOH \longrightarrow SO_4^{2-} + 2H_2O + 2Na^+$$

A l'équivalence: $\frac{n_{(H_2SO_4)}}{1} = \frac{n_{(NaOH)}}{2} \implies C \times V_E = \frac{C_0 \times V_0}{2}$

$$C = \frac{C_0 \times V_0}{2 \times V_E} = \frac{0.1 \times 40.10^{-3}}{2 \times 20.10^{-3}} = 0.1 \text{ M}$$


Soit le titrage de 100 cm³ d'une solution de carbonate de sodium 10⁻¹ mol.L⁻¹ par une solution d'acide chlorhydrique 0,5 mol.L⁻¹.

- 1) Nombre de points équivalents?
- 2) Volumes de solution titrante ajoutés aux points équivalents ?
- 3) pH aux points équivalents ? Indiquer, sans les justifier, les formules utilisées pour calculer ces pH
- 4) L'hélianthine (intervalle de virage 3,1 4,4) et la phénolphtaléine (intervalle de virage 8,3 10,0) conviennent-elles pour objectiver les points équivalents ?

$$pKa_1 (H_2CO_3) = 6.3$$
; $pKa_2 (HCO_3^-) = 10.3$

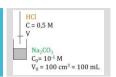
39

Exercice 4

$$pKa_1 (H_2CO_2) = 6.3$$

1) Nb pt Eq.?

$$Na_2CO_3 \longrightarrow CO_3^{2-} + 2Na^+$$


Réactions de dosage :

$$CO_3^{2-} + H_3O^+ + Cl^- \longrightarrow HCO_3^- + H_2O + Cl^-$$
 Δ_1 pKa = 10,3 - 0 = 10,3 > 4

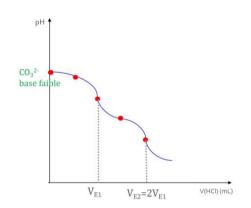
$$HCO_3^- + H_3O^+ + Cl^- \longrightarrow H_2CO_3 + H_2O + Cl^-$$
 $\Delta_2 pKa = 6.3 - 0 = 6.3 > 4$

$$\Delta_1$$
pKa et Δ_2 pKa > 4 et pKa₂ - pKa1=4

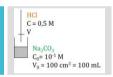
2 brusques variations de pH = 2 pts Eq.

-2) V HCl versés aux pts Eq.?

- Au 1er pt Eq:


$$CO_3^{2-} + H_3O^+ + Cl^- \longrightarrow HCO_3^- + H_2O + Cl^-$$

$$C_0V_0 = CV \text{ soit } V_{E1} = C_0V_0/C = (10^{-1} \text{ x } 100)/0.5 = 20 \text{ mL}$$


- Au 2ème pt Eq:

$$CO_3^{2-} + \frac{2}{2}H_3O^+ + 2Cl^- \longrightarrow H_2CO_3 + 2H_2O + 2Cl^-$$

$$2C_0V_0 = CV \text{ soit } V_{E2} = 2C_0V_0/C = 2(10^{-1} \text{ x } 100)/0.5) = 40 \text{ mL}$$

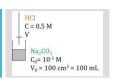
Exercice 4

3) pH aux pts Eq. et 4)indicateurs colorés

$$pKa_1 (H_2CO_2) = 6.3$$

$$pKa_1 (H_2CO_3) = 6.3$$
 $pKa_2 (HCO_3^-) = 10.3$

- Au 1er pt Eq:


$$CO_3^{2-}$$
 + H_3O^+ + $Cl^ \longrightarrow$ HCO_3^- + H_2O + Cl^-

Etat initial Au 1er pt Eq. C_0

$$\frac{C_0 V_0}{V_0 + V_{E1}}$$

Ampholyte $pH = 1/2 (pKa_1 + pKa_2) = 8,3$

\$\infty\$ phénolphtaléine (zone de virage : 8,3-10)

- Au 2^{ème} pt Eq:

$$pKa_1 (H_2CO_3) = 6.3$$

$$pKa_1 (H_2CO_3) = 6.3$$
 $pKa_2 (HCO_3^-) = 10.3$

$$HCO_3^- + H_3O^+ + Cl^- \longrightarrow H_2CO_3 + H_2O + Cl^-$$

Etat initial

$$\frac{C_0 V_0}{V_0 + V}$$

$$\frac{C_0V_0}{V_0 + V_{E2}}$$
Acide faible

[H₃O+] ≥10 [OH-] et pH≤pKa-1

$$pH = \frac{1}{2}pKa_1 - \frac{1}{2}\log\left(\frac{C_0V_0}{V_0 + V_{E2}}\right) = \frac{1}{2} \times 6.3 - \frac{1}{2}\log\left(\frac{0.1 \times 100}{100 + 40}\right) = \mathbf{3.7}$$

hélianthine (zone de virage : 3,1-4,4)

43

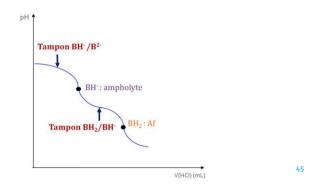
Exercice 5

Dans la courbe de titrage par un acide fort d'une solution de bases faibles de type B²⁻ (dont les pKa des deux couples diffèrent de plus de 4 unités pH et sont supérieurs à 4):

- on trouve 3 solutions tampons et 2 ampholytes.
- ☐ l'ajout de 2 équivalents d'acide fort mène à un ampholyte
- on trouve 2 solutions tampons et 2 ampholytes
- ☐ l'ajout de 1 équivalent d'acide fort mène à une base faible
- on trouve 2 solutions tampons, 1 ampholyte et un acide faible

Titrage B²⁻ / AF

 \gt 2 couples acide/base : $BH_2/BH^ pKa_1$ BH^-/B^{2-} pKa_2 Δ_1 pKa et Δ_2 pKa > 4 et pKa_2 - pKa_1 = 4

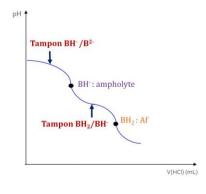

2 brusques variations de pH = 2 pts Eq.

Réactions de neutralisation:

$$B^{2-} + H_3O^+ \longrightarrow BH^- + H_2O$$

$$BH^- + H_3O^+ \longrightarrow BH_2 + H_2O$$

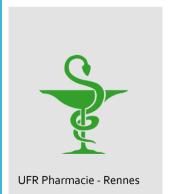
- > Bilan
- 2 solutions tampon
- 1 ampholyte
- 1 acide faible


Exercice 5

Dans la courbe de titrage par un acide fort d'une solution de base faible de type B²⁻ (dont les pKa des deux couples diffèrent de plus de 4 unités pH et sont supérieurs à 4):

- ☐ l'ajout de 2 équivalents d'acide fort mène à un ampholyte
- on trouve 2 solutions tampons et 2 ampholytes
- ☐ l'ajout de 1 équivalent d'acide fort mène à une base faible

X on trouve 2 solutions tampons, 1 ampholyte et un acide faible


Exercice 6 (Concours QCM 2022)

Au cours du dosage d'une base forte par un acide fort,

- 🔀 A Le pH est égal à 7 au point équivalent
- B La formule de pH utilisée pour calculer le pH avant le point équivalent est celle des bases fortes C La formule de pH utilisée pour calculer le pH après le point équivalent est celle des acides forts
- □ D Plus la concentration des 2 antagonistes est faible, plus le saut de pH à l'équivalence est important
- ☐ E Toutes les propositions précédentes sont fausses

Merci pour votre attention

Une question... Une précision... RDV sur le forum acidimétrie

Dr Marylène CHOLLET-KRUGLER / UFR Pharmacie / Rennes

S

Mars 2023

